
Perish the Sort:
Using Indexes and Hash Objects

for Efficient Programming

Jason A Smith
Argo Analytics Ltd

PhUSE 2016 Paper CC08

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• Indexes to combine or classify data

• What is an index?

• Simple index

• Composite index

• Multiple and unique indexes

Contents

• Hash objects to combine data

• What is a hash object?

• Combining unsorted datasets

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

What is an index?

Classfit Dataset Classfit Index

• an index is a special companion file containing the values and
record numbers of the indexed variables:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• to create an index on a dataset:

 data dataset (index=(index-specification-1</unique>

 index-specification-2</unique>));

 ...your code here

 run;

Index syntax

• to display index usage information in SAS log:

 options msglevel=i;

• can view in explorer:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• try to merge datasets that are not sorted or ordered:

 data class;

 merge sashelp.class classfit;

 by name;

 run;

Simple index

• data step runs with errors:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• define simple index NAME:

 data classfit (index=(name));

 set sashelp.classfit;

 run;

Simple index

• log confirms that the index has been defined:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• data can now be used with a BY statement without the need
 for the dataset to be sorted:

 data class;

 merge sashelp.class classfit;

 by name;

 run;

Simple index

• log confirms that the index has been used, no SAS errors:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• define composite index on variables Sex and Age:

 data class (index=(sexage=(sex age)));

 set sashelp.class;

 run;

Composite index

• log confirms that the composite index has been defined:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• data can now be used with a BY statement without the need
 for the dataset to be sorted:

 proc means data=class;

 by sex age;

 var height weight;

 run;

Composite index

• log confirms that the index has been used:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• define simple index NAME along with a composite index on
 variables SEX and AGE:

 data classfit (index=(name

 sexage=(sex age)));

 set sashelp.classfit;

 run;

Multiple indexes

• log confirms that both indexes have been defined:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• a unique index can be used to ensure that the key variable(s)
 are unique for each row:

 data class (index=(name/unique));

 set sashelp.class;

 run;

Unique index

• the index creation is successful, confirming that NAME is
 unique:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• SAS will reject the index and give an error if any duplicate keys
 exist:

 data class (index=(sex/unique));

 set sashelp.class;

 run;

Unique index

• log shows that the index creation has failed:

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• indexes can be easily viewed using either PROC CONTENTS:

 proc contents data=classfit;

 run;

Index management

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• or PROC SQL:

 proc sql;

 describe table classfit;

 quit;

Index management

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• indexes can be easily added to (or deleted from) existing
 datasets using either PROC DATASETS:

 proc datasets nolist;

 modify classfit;

 index delete name;

 index create sex;

 index create namesex=(name sex)/unique;

 quit;

Index management

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• indexes can be easily added to (or deleted from) existing
 datasets using either PROC DATASETS or PROC SQL:

 proc sql;

 drop index sex from classfit;

 create index age on classfit;

 create unique index agename on classfit(age,name);

 quit;

Index management

data class1;

 merge sashelp.class classfit;

 by name;

run;

proc sort data=class1;

 by sex;

run;

proc means data=class1 noprint;

 by sex;

 var height;

 output out=class2 (drop=_:) n=row1_n min=row2_min mean=row3_mean max=row4_max;

run;

proc transpose data=class2 out=class3;

 by sex;

 var row:;

run;

proc sort data=class3;

 by _name_;

run;

proc transpose data=class3 out=height_summary;

 by _name_;

 var col1;

 format col1 8.2;

 id sex;

run;

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index example

data class1;

 merge sashelp.class classfit;

 by name;

run;

proc sort data=class1;

 by sex;

run;

proc means data=class1 noprint;

 by sex;

 var height;

 output out=class2 (drop=_:) n=row1_n min=row2_min mean=row3_mean max=row4_max;

run;

proc transpose data=class2 out=class3;

 by sex;

 var row:;

run;

proc sort data=class3;

 by _name_;

run;

proc transpose data=class3 out=height_summary;

 by _name_;

 var col1;

 format height 8.2;

 id sex;

run;

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index example

data class1 (index=(sex));

 merge sashelp.class classfit;

 by name;

run;

proc means data=class1 noprint;

 by sex;

 var height;

 output out=class2 (drop=_:) n=row1_n min=row2_min mean=row3_mean max=row4_max;

run;

proc transpose data=class2 out=class3;

 by sex;

 var row:;

run;

proc sort data=class3;

 by _name_;

run;

proc transpose data=class3 out=height_summary;

 by _name_;

 var col1;

 format col1 8.2;

 id sex;

run;

data class1 (index=(sex));

 merge sashelp.class classfit;

 by name;

run;

proc means data=class1 noprint;

 by sex;

 var height;

 output out=class2 (drop=_:) n=row1_n min=row2_min mean=row3_mean max=row4_max;

run;

proc transpose data=class2 out=class3;

 by sex;

 var row:;

run;

proc sort data=class3;

 by _name_;

run;

proc transpose data=class3 out=height_summary;

 by _name_;

 var col1;

 format col1 8.2;

 id sex;

run;

data class1 (index=(sex));

 merge sashelp.class classfit;

 by name;

run;

proc means data=class1 noprint;

 by sex;

 var height;

 output out=class2 (drop=_:) n=row1_n min=row2_min mean=row3_mean max=row4_max;

run;

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index example

proc transpose data=class2 out=class3;

 by sex;

 var row:;

run;

proc sort data=class3;

 by _name_;

run;

proc transpose data=class3 out=height_summary;

 by _name_;

 var col1;

 format height 8.2;

 id sex;

run;

proc transpose data=class2 out=class3 (index=(_name_));

 by sex;

 var row:;

run;

proc transpose data=class3 out=height_summary;

 by _name_;

 var col1;

 format col1 8.2;

 id sex;

run;

data class1 (index=(sex));

 merge sashelp.class classfit;

 by name;

run;

proc means data=class1 noprint;

 by sex;

 var height;

 output out=class2 (drop=_:) n=row1_n min=row2_min mean=row3_mean max=row4_max;

run;

proc transpose data=class2 out=class3 (index=(_name_));

 by sex;

 var row:;

run;

proc transpose data=class3 out=height_summary;

 by _name_;

 var col1;

 format col1 8.2;

 id sex;

run;

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

• hash objects are a type of data structure that allows SAS to
 efficiently search for data

• stored in memory and only exists during the execution of the
 data step

• can be used to combine two or more datasets

• no need for either dataset to be sorted or ordered and the
 order of the original dataset is unchanged

What is a Hash Object?

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Combining unsorted datasets

• need to combine RAW.DOSE and RAW.COHORT datasets, only
 keeping subjects in Cohort A

• neither dataset is sorted, and we want to retain the original
 order of RAW.DOSE

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Hash Object example

/* set N to current order of dataset */

data dose1;

 set raw.dose;

 n=_n_;

run;

/* sort DOSE by Subject */

proc sort data=dose1;

 by subject;

run;

/* sort COHORT by subject */

proc sort data=raw.cohort out=cohort;

 by subject;

run;

/* merge DOSE with COHORT, only keep Cohort A subjects */

data dose2;

 merge dose1 (in=a) cohort (where=(cohort='A') in=b);

 by subject;

 if a & b;

run;

/* sort DOSE back to original order */

proc sort data=dose2 out=cut.dose (drop=n);

 by n;

run;

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Hash Object example

/* combine DOSE with COHORT, only keep Cohort A subjects */

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))");

 h.defineKey("subject");

 h.defineData("cohort");

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose;

 rc = h.find();

 if rc = 0 then output;

 drop rc;

run;

/* combine DOSE with COHORT, only keep Cohort A subjects */

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); ①

 h.defineKey("subject");

 h.defineData("cohort");

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose;

 rc = h.find();

 if rc = 0 then output;

 drop rc;

run;

① read the RAW.COHORT dataset into the hash object

/* combine DOSE with COHORT, only keep Cohort A subjects */

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); ①

 h.defineKey("subject"); ②

 h.defineData("cohort");

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose;

 rc = h.find();

 if rc = 0 then output;

 drop rc;

run;

① read the RAW.COHORT dataset into the hash object

② define SUBJECT as the key variable (equivalent to the BY variable in a merge)

/* combine DOSE with COHORT, only keep Cohort A subjects */

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); ①

 h.defineKey("subject"); ②

 h.defineData("cohort"); ③

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose;

 rc = h.find();

 if rc = 0 then output;

 drop rc;

run;

① read the RAW.COHORT dataset into the hash object

② define SUBJECT as the key variable (equivalent to the BY variable in a merge)

③ define any data item variables that are to be added to the new dataset

/* combine DOSE with COHORT, only keep Cohort A subjects */

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); ①

 h.defineKey("subject"); ②

 h.defineData("cohort"); ③

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose; ④

 rc = h.find();

 if rc = 0 then output;

 drop rc;

run;

① read the RAW.COHORT dataset into the hash object

② define SUBJECT as the key variable (equivalent to the BY variable in a merge)

③ define any data item variables that are to be added to the new dataset

④ read in the RAW.DOSE dataset

/* combine DOSE with COHORT, only keep Cohort A subjects */

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); ①

 h.defineKey("subject"); ②

 h.defineData("cohort"); ③

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose; ④

 rc = h.find(); ⑤

 if rc = 0 then output;

 drop rc;

run;

① read the RAW.COHORT dataset into the hash object

② define SUBJECT as the key variable (equivalent to the BY variable in a merge)

③ define any data item variables that are to be added to the new dataset

④ read in the RAW.DOSE dataset

⑤ h.find() is the method used to retrieve the data from the hash object

/* combine DOSE with COHORT, only keep Cohort A subjects */

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); ①

 h.defineKey("subject"); ②

 h.defineData("cohort"); ③

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose; ④

 rc = h.find(); ⑤

 if rc = 0 then output; ⑥

 drop rc;

run;

① read the RAW.COHORT dataset into the hash object

② define SUBJECT as the key variable (equivalent to the BY variable in a merge)

③ define any data item variables that are to be added to the new dataset

④ read in the RAW.DOSE dataset

⑤ h.find() is the method used to retrieve the data from the hash object

⑥ a return code of zero indicates that the find was successful

/* combine DOSE with COHORT, only keep Cohort A subjects */

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); ①

 h.defineKey("subject"); ②

 h.defineData("cohort"); ③

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose; ④

 rc = h.find(); ⑤

 if rc = 0 then output; ⑥

 drop rc;

run;

① read the RAW.COHORT dataset into the hash object

② define SUBJECT as the key variable (equivalent to the BY variable in a merge)

③ define any data item variables that are to be added to the new dataset

④ read in the RAW.DOSE dataset

⑤ h.find() is the method used to retrieve the data from the hash object

⑥ a return code of zero indicates that the find was successful

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Hash Object example

• SAS log confirms that 9 observations have been output:

• contains only the Cohort A subjects, original order is retained

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Conclusion

• indexes can simplify coding by replacing the sort procedure
with an index option before combining or classifying data

• hash objects can be used to combine two or more unsorted
datasets in a single data step

• these techniques can be used to reduce reliance on the SORT
procedure resulting in shorter code, quicker and neater
programming as well as improved execution time

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Questions?

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Jason A Smith
Argo Analytics Ltd
32 Woodlark Road, Cambridge CB3 0HS, UK
Phone: +44 7792 046599
Email: jason@argoanalytics.co.uk
LinkedIn: http://www.linkedin.com/in/jason-a-smith
Web: www.argoanalytics.co.uk

Contact

mailto:jason@argoanalytics.co.uk
http://www.linkedin.com/in/jason-a-smith
http://www.linkedin.com/in/jason-a-smith
http://www.linkedin.com/in/jason-a-smith
http://www.linkedin.com/in/jason-a-smith
http://www.linkedin.com/in/jason-a-smith
http://www.argoanalytics.co.uk/

