### PhUSE 2016 Paper CC08

#### Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Jason A Smith Argo Analytics Ltd

### Contents

- Indexes to combine or classify data
  - What is an index?
  - Simple index
  - Composite index
  - Multiple and unique indexes
- Hash objects to combine data
  - What is a hash object?
  - Combining unsorted datasets

# What is an index?

 an index is a special companion file containing the values and record numbers of the indexed variables:

Classfit Index

Classfit Dataset

| index   |                                |     | Name    | Sex | Age | Height | Weight |
|---------|--------------------------------|-----|---------|-----|-----|--------|--------|
| Alice   |                                | 1   | Joyce   | F   | 11  | 51.3   | 50.5   |
| Carol   | $\langle \ \rangle$            | 2   | Louise  | F   | 12  | 56.3   | 77     |
| James   | $\downarrow$ $\uparrow$        | 3   | Alice   | F   | 13  | 56.5   | 84     |
| Jane    | $\backslash \uparrow \uparrow$ | - 4 | James   | М   | 12  | 57.3   | 83     |
| Janet   |                                | 5   | Thomas  | М   | 11  | 57.5   | 85     |
| Jeffrey |                                | 6   | John    | М   | 12  | 59     | 99.5   |
| John    | XX.                            | 7   | Jane    | F   | 12  | 59.8   | 84.5   |
| Joyce   |                                | 8   | Janet   | F   | 15  | 62.5   | 112.5  |
| Louise  | // \                           | 9   | Jeffrey | М   | 13  | 62.5   | 84     |
| Thomas  |                                | 10  | Carol   | F   | 14  | 62.8   | 102.5  |

### Index syntax

• to create an index on a dataset:

... your code here

run;

to display index usage information in SAS log:

```
options msglevel=i;
```

• can view in explorer:

| Name              | Туре          | Size |        |
|-------------------|---------------|------|--------|
| classfit.sas7bdat | SAS7BDAT File |      | 192 KB |
| classfit.sas7bndx | SAS7BNDX File |      | 24 KB  |

# Simple index

• try to merge datasets that are not sorted or ordered:

```
data class;
  merge sashelp.class classfit;
  by name;
run;
```

#### • data step runs with errors:

ERROR: BY variables are not properly sorted on data set WORK.CLASSFIT. Name=Louise Sex=F Age=12 Height=56.3 Weight=77 predict=76.488485693 lowermean=67.960050237 uppermean=85.016921149 lower=51.314521735 upper=101.66244965 FIRST.Name=1 LAST.Name=1 \_ERROR\_=1 \_N\_=13 NOTE: The SAS System stopped processing this step because of errors. NOTE: There were 14 observations read from the data set SASHELP.CLASS. NOTE: There were 3 observations read from the data set WORK.CLASSFIT. WARNING: The data set WORK.CLASS may be incomplete. When this step was stopped there were 12 observations and 10 variables.

### Simple index

• define simple index NAME:

```
data classfit (index=(name));
  set sashelp.classfit;
run;
```

log confirms that the index has been defined:

NOTE: There were 19 observations read from the data set SASHELP.CLASSFIT. NOTE: The data set WORK.CLASSFIT has 19 observations and 10 variables. NOTE: Simple index name has been defined. NOTE: DATA statement used (Total process time): real time 0.01 seconds cpu time 0.01 seconds

# Simple index

 data can now be used with a BY statement without the need for the dataset to be sorted:

```
data class;
  merge sashelp.class classfit;
  by name;
run;
```

log confirms that the index has been used, no SAS errors:



#### Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

### Composite index

define composite index on variables Sex and Age:

```
data class (index=(sexage=(sex age)));
  set sashelp.class;
run;
```

log confirms that the composite index has been defined:

NOTE: There were 19 observations read from the data set SASHELP.CLASS. NOTE: The data set WORK.CLASS has 19 observations and 5 variables. NOTE: Composite index sexage has been defined.

NOTE: DATA statement used (Total process time): real time 0.00 seconds cpu time 0.00 seconds

# Composite index

 data can now be used with a BY statement without the need for the dataset to be sorted:

```
proc means data=class;
   by sex age;
   var height weight;
run;
```

log confirms that the index has been used:

INFO: Index sexage selected for BY clause processing. NOTE: An index was selected to execute the BY statement. The observations will be returned in index order rather than in physical order. The selected index is for the variable(s): Sex Age

# Multiple indexes

 define simple index NAME along with a composite index on variables SEX and AGE:

```
data classfit (index=(name
                                   sexage=(sex age)));
   set sashelp.classfit;
run;
```

log confirms that both indexes have been defined:

```
NOTE: There were 19 observations read from the data set SASHELP.CLASSFIT.
NOTE: The data set WORK.CLASSFIT has 19 observations and 10 variables.
NOTE: Composite index sexage has been defined.
NOTE: Simple index name has been defined.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds
```

# Unique index

 a unique index can be used to ensure that the key variable(s) are unique for each row:

```
data class (index=(name/unique));
  set sashelp.class;
run;
```

 the index creation is successful, confirming that NAME is unique:

NOTE: There were 19 observations read from the data set SASHELP.CLASS. NOTE: The data set WORK.CLASS has 19 observations and 5 variables. NOTE: Simple index name has been defined. NOTE: DATA statement used (Total process time): real time 0.00 seconds cpu time 0.01 seconds

# Unique index

 SAS will reject the index and give an error if any duplicate keys exist:

```
data class (index=(sex/unique));
  set sashelp.class;
run;
```

log shows that the index creation has failed:

NOTE: There were 19 observations read from the data set SASHELP.CLASS. NOTE: The data set WORK.CLASS has 19 observations and 5 variables. ERROR: Duplicate values not allowed on index Sex for file CLASS. ERROR: Index creation failed for one or more indexes. NOTE: DATA statement used (Total process time):

| real time | 0.01 seconds |
|-----------|--------------|
| cpu time  | 0.02 seconds |

• indexes can be easily viewed using either PROC CONTENTS:

proc contents data=classfit; run;

| Alp | Alphabetic List of Indexes and Attributes |                          |           |  |  |  |  |
|-----|-------------------------------------------|--------------------------|-----------|--|--|--|--|
| #   | Index                                     | # of<br>Unique<br>Values | Variables |  |  |  |  |
| 1   | Name                                      | 19                       |           |  |  |  |  |
| 2   | sexage                                    | 11                       | Sex Age   |  |  |  |  |

• or PROC SQL:

```
proc sql;
  describe table classfit;
quit;
```

NOTE: SQL table WORK.CLASSFIT was created like:

```
create table WORK.CLASSFIT( bufsize=65536 )
 (
   Name char(8),
   Sex char(1),
   Age num,
   Height num
 );
create index Name on WORK.CLASSFIT(Name);
create index sexage on WORK.CLASSFIT(Sex,Age);
```

 indexes can be easily added to (or deleted from) existing datasets using either PROC DATASETS:

```
proc datasets nolist;
modify classfit;
index delete name;
index create sex;
index create namesex=(name sex)/unique;
quit;
```

58 index delete name; NOTE: Index Name deleted. 59 index create sex; NOTE: Simple index Sex has been defined. 60 index create namesex=(name sex)/unique; NOTE: Composite index namesex has been defined.

 indexes can be easily added to (or deleted from) existing datasets using either PROC DATASETS or PROC SQL:

```
proc sql;
  drop index sex from classfit;
  create index age on classfit;
  create unique index agename on classfit(age,name);
  quit;
```

57 drop index sex from classfit; NOTE: Index sex has been dropped. 58 create index age on classfit; NOTE: Simple index age has been defined. 59 create unique index agename on classfit(age,name); NOTE: Composite index agename has been defined.

### Index example

| <pre>merge sashelp.class classfit;<br/>by name;<br/>run;<br/>proc sort data=class1;<br/>by sex;<br/>run;</pre>                                                                                     | 1                      | Name<br>Joyce                                                      | Sex<br>F                                           | Age                  | Usight                        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------|----------------------------------------------------|----------------------|-------------------------------|--|
| <pre>by name;<br/>run;<br/>proc sort data=class1;<br/>by sex;<br/>run;</pre>                                                                                                                       | 1<br>2                 | Name<br>Joyce                                                      | Sex F                                              | Age                  | Haight                        |  |
| <pre>run; proc sort data=class1;    by sex; run;</pre>                                                                                                                                             | 1<br>2                 | Joyce                                                              | F                                                  |                      | Height                        |  |
| <pre>proc sort data=class1;<br/>by sex;<br/>run;</pre>                                                                                                                                             | 2                      |                                                                    |                                                    | 11                   | 51.3                          |  |
| by sex;<br>run;                                                                                                                                                                                    |                        | Louise                                                             | F                                                  | 12                   | 56.3                          |  |
| run;                                                                                                                                                                                               | 2                      | Alico                                                              | c                                                  | 13                   | 56.5                          |  |
|                                                                                                                                                                                                    | 5                      | Allce                                                              | F                                                  | 15                   | 50.5                          |  |
| proc means data=class1 noprint;                                                                                                                                                                    | 4                      | James                                                              | М                                                  | 12                   | 57.3                          |  |
| by sex;                                                                                                                                                                                            | 5                      | Thomas                                                             | M                                                  | 11                   | 57.5                          |  |
| var height;                                                                                                                                                                                        |                        |                                                                    |                                                    |                      |                               |  |
| <pre>output out=class2 (drop=_:) n=row1_n min=row2_min m</pre>                                                                                                                                     | ean=ro                 | w3_mean max                                                        | x=row4_ma                                          | ax ;                 |                               |  |
| run;                                                                                                                                                                                               |                        |                                                                    |                                                    |                      |                               |  |
| proc transpose data=class2 out=class3;                                                                                                                                                             |                        |                                                                    |                                                    |                      |                               |  |
| by sex; HEIGHT_SUMMARY                                                                                                                                                                             |                        |                                                                    |                                                    |                      |                               |  |
| by sex;                                                                                                                                                                                            | HE                     | EIGHT_SUMM                                                         | ARY                                                |                      |                               |  |
| by sex;<br>var row:;                                                                                                                                                                               | HE                     | EIGHT_SUMM                                                         | ARY                                                | Ŷ                    |                               |  |
| by sex;<br>var row:;<br>run;                                                                                                                                                                       | HE                     | IGHT_SUMM                                                          | ARY<br>F                                           | V                    | м                             |  |
| by sex;<br>var row:;<br>run;                                                                                                                                                                       | 1                      | IGHT_SUMM<br>_ <b>NAME_</b><br>row1_n                              | ARY<br>F<br>9.00                                   | 10                   | <b>M</b><br>.00               |  |
| <pre>by sex;<br/>var row:;<br/>run;<br/>proc sort data=class3;<br/>by _name_;</pre>                                                                                                                | 1<br>2                 | IGHT_SUMM<br>_ <b>NAME_</b><br>row1_n<br>row2_min                  | ARY<br>F<br>9.00<br>51.30                          | 10<br>57             | <b>M</b><br>.00<br>.30        |  |
| <pre>by sex;<br/>var row:;<br/>run;<br/>proc sort data=class3;<br/>by _name_;<br/>run;</pre>                                                                                                       | HE<br>1<br>2<br>3      | IGHT_SUMM<br>_ <b>NAME_</b><br>row1_n<br>row2_min<br>row3_mean     | ARY<br><b>F</b><br>9.00<br>51.30<br>60.59          | 10<br>57<br>63       | M<br>.00<br>.30<br>.91        |  |
| <pre>by sex;<br/>var row:;<br/>run;<br/>proc sort data=class3;<br/>by _name_;<br/>run;<br/>proc transpose data=class3 out=height_summary;</pre>                                                    | HE<br>1<br>2<br>3<br>4 | _NAME_<br>row1_n<br>row2_min<br>row3_mean<br>row4_max              | ARY<br><b>F</b><br>9.00<br>51.30<br>60.59<br>66.50 | 10<br>57<br>63<br>72 | M<br>.00<br>.30<br>.91        |  |
| <pre>by sex;<br/>var row:;<br/>run;<br/>proc sort data=class3;<br/>by _name_;<br/>run;<br/>proc transpose data=class3 out=height_summary;<br/>by _name_;</pre>                                     | 1<br>2<br>3<br>4       | IGHT_SUMM<br>_NAME_<br>row1_n<br>row2_min<br>row3_mean<br>row4_max | ARY<br>9.00<br>51.30<br>60.59<br>66.50             | 10<br>57<br>63<br>72 | M<br>.00<br>.30<br>.91<br>.00 |  |
| <pre>by sex;<br/>var row:;<br/>run;<br/>proc sort data=class3;<br/>by _name_;<br/>run;<br/>proc transpose data=class3 out=height_summary;<br/>by _name_;<br/>var col1;<br/>formath_call_0.2;</pre> | HE<br>1<br>2<br>3<br>4 | _NAME_<br>row1_n<br>row2_min<br>row3_mean<br>row4_max              | ARY<br><b>F</b><br>9.00<br>51.30<br>60.59<br>66.50 | 10<br>57<br>63<br>72 | M<br>.00<br>.30<br>.91        |  |
| by sex;                                                                                                                                                                                            | HE                     | EIGHT_SUMM                                                         | ARY                                                | ↓                    |                               |  |

run;

### Index example

```
merge sashelp.class classfit;
by name;
run;
proc means data=class1 noprint;
by sex;
var height;
output out=class2 (drop=_:) n=row1_n min=row2_min mean=row3_mean max=row4_max;
```

run;

```
proc transpose data=class2 out=class3;
```

by sex;

```
var row:;
```

run;

```
proc sort data=class3;
```

data class1 (index=(sex));

```
by _name_;
```

run;

```
proc transpose data=class3 out=height_summary;
  by _name_;
  var col1;
  format col1 8.2;
```

```
id sex;
```

```
run;
```

#### HEIGHT\_SUMMARY

|   | _NAME_    | F     | М     |
|---|-----------|-------|-------|
| 1 | row1_n    | 9.00  | 10.00 |
| 2 | row2_min  | 51.30 | 57.30 |
| 3 | row3_mean | 60.59 | 63.91 |
| 4 | row4_max  | 66.50 | 72.00 |

### Index example

```
merge sashelp.class classfit;
by name;
run;
proc means data=class1 noprint;
by sex;
var height;
output out=class2 (drop=_:) n=row1_n min=row2_min mean=row3_mean max=row4_max;
run;
```

```
proc transpose data=class2 out=class3 (index=(_name_));
by sex;
```

```
var row:;
```

```
run;
```

```
proc transpose data=class3 out=height_summary;
```

#### HEIGHT\_SUMMARY

| by _name_;         |
|--------------------|
| var col1;          |
| format coll 8.2;   |
| <pre>id sex;</pre> |
| run;               |

data class1 (index=(sex));

|   | _NAME_    | F     | М     |
|---|-----------|-------|-------|
| 1 | row1_n    | 9.00  | 10.00 |
| 2 | row2_min  | 51.30 | 57.30 |
| 3 | row3_mean | 60.59 | 63.91 |
| 4 | row4_max  | 66.50 | 72.00 |

# What is a Hash Object?

- hash objects are a type of data structure that allows SAS to efficiently search for data
- stored in memory and only exists during the execution of the data step
- can be used to combine two or more datasets
- no need for either dataset to be sorted or ordered and the order of the original dataset is unchanged

### **Combining unsorted datasets**

- need to combine RAW.DOSE and RAW.COHORT datasets, only keeping subjects in Cohort A
- neither dataset is sorted, and we want to retain the original order of RAW.DOSE
   RAW.DOSE \*

|   | NAW.COHO |        |  |  |
|---|----------|--------|--|--|
|   | SUBJECT  | COHORT |  |  |
| 1 | E5       | A      |  |  |
| 2 | C3       | А      |  |  |
| 3 | D4       | В      |  |  |
| 4 | B2       | В      |  |  |
| 5 | A1       | A      |  |  |

|    | SUBJECT | DOSE | STARTDT   | STOPDT    |
|----|---------|------|-----------|-----------|
| 1  | C3      | 500  | 06MAR2016 | 13MAR2016 |
| 2  | C3      | 500  | 20FEB2016 | 27FEB2016 |
| 3  | B2      | 500  | 05MAR2016 | 12MAR2016 |
| 4  | B2      | 500  | 19FEB2016 | 26FEB2016 |
| 5  | E5      | 500  | 08MAR2016 | 15MAR2016 |
| 6  | E5      | 500  | 22FEB2016 | 29FEB2016 |
| 7  | A1      | 500  | 04MAR2016 | 11MAR2016 |
| 8  | A1      | 500  | 18FEB2016 | 25FEB2016 |
| 9  | D4      | 500  | 07MAR2016 | 14MAR2016 |
| 10 | D4      | 500  | 21FEB2016 | 28FEB2016 |
| 11 | B2      | 500  | 13MAR2016 | 20MAR2016 |
| 12 | D4      | 500  | 15MAR2016 | 22MAR2016 |
| 13 | E5      | 500  | 16MAR2016 | 23MAR2016 |
| 14 | A1      | 500  | 12MAR2016 | 19MAR2016 |
| 15 | C3      | 500  | 14MAR2016 | 21MAR2016 |

### Hash Object example

```
/* set N to current order of dataset */
data dose1;
  set raw.dose;
  n= n ;
run;
/* sort DOSE by Subject */
proc sort data=dose1;
  by subject;
run;
/* sort COHORT by subject */
proc sort data=raw.cohort out=cohort;
  by subject;
run;
/* merge DOSE with COHORT, only keep Cohort A subjects */
data dose2;
  merge dose1 (in=a) cohort (where=(cohort='A') in=b);
 by subject;
  if a & b;
run;
/* sort DOSE back to original order */
proc sort data=dose2 out=cut.dose (drop=n);
  by n;
```

run;

### Hash Object example

```
/* combine DOSE with COHORT, only keep Cohort A subjects */
data cut.dose;
length SUBJECT $2 COHORT $1;

if _n_=1 then do;
  declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); (1)
  h.defineKey("subject"); (2)
  h.defineData("cohort"); (3)
  h.defineDone();
  call missing (subject,cohort);
end;

set raw.dose; (4)
rc = h.find(); (5)
if rc = 0 then output; (6)
drop rc;
```

run;

1 read the RAW.COHORT dataset into the hash object

(2) define SUBJECT as the key variable (equivalent to the BY variable in a merge)

(3) define any data item variables that are to be added to the new dataset

(4) read in the RAW.DOSE dataset

- (5) h.find() is the method used to retrieve the data from the hash object
- 6 a return code of zero indicates that the find was successful

### Hash Object example

• SAS log confirms that 9 observations have been output:

NOTE: There were 3 observations read from the data set RAW.COHORT. WHERE cohort='A';

NOTE: There were 15 observations read from the data set RAW.DOSE.

NOTE: The data set CUT.DOSE has 9 observations and 5 variables.

NOTE: DATA statement used (Total process time): real time 0.04 seconds cpu time 0.04 seconds

contains only the Cohort A subjects, original order is retained

| E CU | T.D | OSE | × |
|------|-----|-----|---|
|------|-----|-----|---|

|   | SUBJECT | COHORT | DOSE | STARTDT   | STOPDT    |
|---|---------|--------|------|-----------|-----------|
| 1 | C3      | A      | 500  | 06MAR2016 | 13MAR2016 |
| 2 | C3      | A      | 500  | 20FEB2016 | 27FEB2016 |
| 3 | E5      | A      | 500  | 08MAR2016 | 15MAR2016 |
| 4 | E5      | A      | 500  | 22FEB2016 | 29FEB2016 |
| 5 | A1      | A      | 500  | 04MAR2016 | 11MAR2016 |
| 6 | A1      | A      | 500  | 18FEB2016 | 25FEB2016 |
| 7 | E5      | A      | 500  | 16MAR2016 | 23MAR2016 |
| 8 | A1      | A      | 500  | 12MAR2016 | 19MAR2016 |
| 9 | C3      | A      | 500  | 14MAR2016 | 21MAR2016 |

- indexes can simplify coding by replacing the sort procedure with an index option before combining or classifying data
- hash objects can be used to combine two or more unsorted datasets in a single data step
- these techniques can be used to reduce reliance on the SORT procedure resulting in shorter code, quicker and neater programming as well as improved execution time

### Questions?



#### Contact

### Jason A Smith Argo Analytics Ltd

32 Woodlark Road, Cambridge CB3 OHS, UK

Phone: +44 7792 046599

Email: jason@argoanalytics.co.uk

LinkedIn: http://www.linkedin.com/in/jason-a-smith

Web: www.argoanalytics.co.uk

