PhUSE 2016 Paper CCO8

Perish the Sort:
Using Indexes and Hash Objects
for Efficient Programming

Jason A Smith
Argo Analytics Ltd

Contents

* Indexes to combine or classify data
* Whatisan index?
 Simple index
* Composite index

 Multiple and unique indexes

 Hash objects to combine data
* Whatis a hash object?

* Combining unsorted datasets

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

What is an index?

* anindex is a special companion file containing the values and
record numbers of the indexed variables:

Classfit Index Classfit Dataset
index Name Sex Age Height Weight
Alice 1 Joyce F 11 51.3 50.5
Carol 2 Louise F 12 56.3 77
James 3 Alice F 13 56.5 g4
Jane 4 James M 12 57.3 83
Janet 5 Thomas M 11 57.5 85
Jeffrey 6 John M 12 59 99.5
John 7 Jane F 12 59.8 84.5
Joyce g8 Janet F 15 62.5 112.5
Louise 9 Jeffrey M 13 62.5 84
Thomas 10 Carol F 14 62.8 102.5

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index syntax

* to create an index on a dataset:

data dataset (index=(index-specification-1</unique>
index-specification-2</unique>)) ;

...your code here

run;,

* to display index usage information in SAS log:

options msglevel=i;

e canview in explorer:

Mame Type Size

|| classfit.sasibdat SASTEDAT File 192 KB
|| classfit.sasfbndx SASTEMDX File 24 KB

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Simple index

* try to merge datasets that are not sorted or ordered:

data class;
merge sashelp.class classfit;
by name;

run;

 data step runs with errors:

ERROR: BY wvariables are not properly sorted on data set WORK.CLASSFIT.

Name=Louise Sex=F Age=12 Height=56.3 Weight=77 predict=76.488485693

lowermean=67.960050237 uppermean=85.016921149 lower=51.314521735

upper=101.66244965 FIRST.Name=1 LAST.Name=1 ERROR =1 N =13

NOTE: The SAS System stopped processing this step because of errors.

NOTE: There were 14 observations read from the data set SASHELP.CLASS.

NOTE: There were 3 observations read from the data set WORK.CLASSFIT.

WARNING: The data set WORK.CLASS may be incomplete. When this step was stopped
there were 12 observations and 1@ variables.

WARNING: Data set WORK.CLASS was not replaced because this step was stopped.

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Simple index

e define simple index NAME:

data classfit (index=(name)) ;
set sashelp.classfit;
run;

* |og confirms that the index has been defined:

NOTE: There were 19 observations read from the data set SASHELP.CLASSFIT.
NOTE: The data set WORK.CLASSFIT has 19 observations and 1@ variables.
NOTE: Simple index name has been defined.
NOTE: DATA statement used (Total process time):
real time @.81 seconds
cpu time 8.01 seconds

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Simple index

e data can now be used with a BY statement without the need
for the dataset to be sorted:

data class;
merge sashelp.class classfit;
by name;

run;

* |og confirms that the index has been used, no SAS errors:

INFO: Index MName selected for BY clause processing.
NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: There were 19 observations read from the data set WORK.CLASSFIT.
NOTE: The data set WORK.CLASS has 19 cobservations and 18 variables.
NOTE: DATA statement used (Total process time):

real time @.81 seconds

cpu time 8.01 seconds

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Composite index

* define composite index on variables Sex and Age:

data class (index=(sexage=(sex age)));
set sashelp.class;
run;

* |og confirms that the composite index has been defined:

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: The data set WORK.CLASS has 19 observations and 5 variables.
NOTE: Composite index sexage has been defined.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Composite index

e data can now be used with a BY statement without the need
for the dataset to be sorted:

proc means data=class;
by sex age;
var height weight;
run;

* |og confirms that the index has been used:

(INFO: Index sexage selected for BY clause processing.)
NOTE: An index was selected to execute the BY statement.
The observations will be returned in index order rather than in physical
order. The selected index is for the variable(s):

Sex

\Jee J

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Multiple indexes

e define simple index NAME along with a composite index on
variables SEX and AGE:

data classfit (index=(name
sexage=(sex age)));
set sashelp.classfit;
run;

* |og confirms that both indexes have been defined:

NOTE: There were 19 observations read from the data set SASHELP.CLASSFIT.
NOTE: The data set WORK.CLASSFIT has 19 observations and 10 variables.
NOTE: Composite index sexage has been defined.
NOTE: Simple index name has been defined.
NOTE: DATA statement used (Total process time):
real time 8.01 seconds
cpu time 8.01 seconds

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Unique index

e aunique index can be used to ensure that the key variable(s)
are unique for each row:

data class (index=(name/unique)) ;
set sashelp.class;
run;

* the index creation is successful, confirming that NAME is
unique:

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: The data set WORK.CLASS has 19 observations and 5 variables.
NOTE: Simple index name has been defined.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 8.01 seconds

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Unique index

* SAS will reject the index and give an error if any duplicate keys
exist:

data class (index=(sex/unique)) ;
set sashelp.class;
run;

* |og shows that the index creation has failed:

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: The data set WORK.CLASS has 19 observations and 5 variables.
ERROR: Duplicate values not allowed on index Sex for file CLASS.
ERROR: Index creation failed for one or more indexes.
NOTE: DATA statement used (Total process time):

real time 0.01 seconds

cpu time 0.082 seconds

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index management

* indexes can be easily viewed using either PROC CONTENTS:

proc contents data=classfit;

run,

Alphabetic List of Indexes and Attributes

#of
Unique
| Index Values Variables
1 Mame 19
11 Sex Age

2 =exage

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index management

* or PROCSQL:

proc sql;
describe table classfit;
quit;

NOTE: SQL table WORK.CLASSFIT was created like:

create table WORK.CLASSFIT(bufsize=65536)

(

Name char(8),

Sex char(1),

Age num,

Height num

);
create index Name on WORK.CLASSFIT(Name);
create index sexage on WORK.CLASSFIT(Sex,Age);

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index management

* indexes can be easily added to (or deleted from) existing
datasets using either PROC DATASETS:

proc datasets nolist;
modify classfit;
index delete name;
index create sex;

index create namesex=(name sex)/unique;

quit;
(ES index delete name; i\
NOTE: Index Name deleted.
59 index create sex;
NOTE: Simple index Sex has been defined.
60 index create namesex=(name sex)/unigue;
\ﬂﬂTE: Composite index namesex has been defined.

J

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index management

* indexes can be easily added to (or deleted from) existing
datasets using either PROC DATASETS or PROC SQL:

proc sql;
drop index sex from classfit;
create index age on classfit;
create unique index agename on classfit (age,name) ;

quit;
/E? drop index sex from classfit; i\
NOTE: Index sex has been dropped.
58 create index age on classfit;
NOTE: Simple index age has been defined.
59 create unique index agename on classfit(age,name);
\TDTE: Composite index agename has been defined. 4/

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index example

data classl;

merge sashelp.class classfit; CLASSFIT
by name; Name Sex Age Height
run;
1 Joyce F 11 51.3
proc sort data=classl; < e = 12 56.3
by sex;
run; 3 Alice F 13 56.5
) 4 James M 12 57.3
proc means data=classl noprint;
by sex; 5 Thomas M 11 57.5
var height;
output out=class2 (drop=_:) n=rowl n min=row2 min mean=row3_mean max=row4_max;
run;
proc transpose data=class2 out=class3;
by sex; HEIGHT_SUMMARY
var row:;
run; _NAME_ F M
1 rowl_n 5.00 10.00
proc sort data=class3; .
by name ; 2 row2_min 51.30 57.30
run; 3 row3_mean 60.59 63.91
proc transpose data=class3 out=height summary; 4 row4_max 66.50 72.00
by _name_;
var coll;
format coll 8.2;
id sex;
run;

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index example

data classl (index=(sex));
merge sashelp.class classfit;
by name;

run;

proc means data=classl noprint;

by sex;

var height;

output out=class2 (drop=_:) n=rowl n min=row2 min mean=row3_mean max=row4_max;
run;

proc transpose data=class2 out=class3;

by sex;
var row:;
run;
proc sort data=class3; HEIGHT_SUMMARY
by _name_ ;
run; _NAME_ F M
1 rowl_n 5.00 10.00
proc transpose data=class3 out=height_ summary;
by name ; 2 rowZ_min 51.30 57.30
var coll; 3 row3_mean 60.59 63.91
format coll 8.2;
id sex; 4 rowd_max 66.50 T72.00
run;

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Index example

data classl (index=(sex));
merge sashelp.class classfit;
by name;

run;

proc means data=classl noprint;

by sex;

var height;

output out=class2 (drop=_:) n=rowl n min=row2 min mean=row3_mean max=row4_max;
run;

proc transpose data=class2 out=class3 (index=(_name));

by sex;
var row:;
run;
proc transpose data=class3 out=height summary; HEIGHT _SUMMARY
by _name ;
var coll; _NAME_ F M
format coll 8.2; 1 rowl_n 9.00 10.00
id sex; .
run; 2 row2_min 51.30 57.30
3 row3_mean 60.58 63.91
4 rowd_max 66.50 72.00

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

What is a Hash Object?

hash objects are a type of data structure that allows SAS to
efficiently search for data

stored in memory and only exists during the execution of the
data step

can be used to combine two or more datasets

no need for either dataset to be sorted or ordered and the
order of the original dataset is unchanged

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Combining unsorted datasets

* need to combine RAW.DOSE and RAW.COHORT datasets, only
keeping subjects in Cohort A

* neither dataset is sorted, and we want to retain the original
order of RAW.DOSE

RAW.DOSE X

SUBJECT DOSE STARTDT STOPDT

B Fex | 500 06MAR2016 13MAR2016

B RAW.CONORT 2 ¢35 500 20FEB2016 27FEB2016
3 B2 500 O0SMAR2016 12MAR2016

SURIECE. ~SOHORE 4 B2 500 19FEB2016 26FEB2016
5 B i 5 ES5 500 08MAR2016 15MAR2016
i R A 6 ES5 500 22FEB2016 29FEB2016
3 D4 - 7 Al 500 04MAR2016 11MAR2016
4 B2 B8 8 A1l 500 18FEB2016 25FEB2016
5 Al A 9 D4 500 O7TMAR2016 14MAR2016
10 D4 500 21FEB2016 28FEB2016

11 B2 500 13MAR2016 20MAR2016

12 D4 500 15MAR2016 22MAR2016

13 E5 500 16MAR2016 23MAR2016

14 A1 500 12MAR2016 19MAR2016

15 c3 500 14MAR2016 21MAR2016

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Hash Object example

/* set N to current order of dataset */
data dosel;

set raw.dose;

n=n_;
run;

/* sort DOSE by Subject */
proc sort data=dosel;

by subject;
run;

/* sort COHORT by subject */

proc sort data=raw.cohort out=cohort;
by subject;

run;

/* merge DOSE with COHORT, only keep Cohort A subjects */
data dose2;

merge dosel (in=a) cohort (where=(cohort='A') in=Db);

by subject;

if a & b;
run;

/* sort DOSE back to original order */

proc sort data=dose2 out=cut.dose (drop=n) ;
by n;

run;

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Hash Object example

/* combine DOSE with COHORT, only keep Cohort A subjects */
data cut.dose;
length SUBJECT $2 COHORT $1;

if n =1 then do;
declare hash h(dataset:"raw.cohort (where=(cohort='A'))"); C)
h.defineKey ("subject") ; ()
h.defineData ("cohort") ; C)
h.defineDone () ;
call missing (subject,cohort);
end;

set raw.dose; C)
rc = h.find(); ()
if rc = 0 then output; (6

drop rc;
run;

(@ read the RAW.COHORT dataset into the hash object

(@ define SUBJECT as the key variable (equivalent to the BY variable in a merge)
(3 define any data item variables that are to be added to the new dataset

(@) read in the RAW.DOSE dataset

() h.find() is the method used to retrieve the data from the hash object

(& a return code of zero indicates that the find was successful

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Hash Object example

* SAS log confirms that 9 observations have been output:

NOTE: There were 3 observations read from the data set RAW.COHORT.
WHERE cohort="A";

NOTE: There were 15 observations read from the data set RAW.DOSE.

NOTE: The data set CUT.DOSE has 9 observations and 5 wvariables.

MOTE: DATA statement used (Total process time):

* contains only the Cohort A subjects, original order is retained

real time
cpu time

CUT.DOSE X

@.04 seconds
@.084 seconds

SUBJECT COHORT DOSE STARTDT STOPDT
14C3 A 500 06MAR2016 13MAR2016
263 A 500 20FEB2016 27FEB2016
3 E5 A 500 08MAR2016 15MAR2016
4 E5 A 500 22FEB2016 29FEB2016
5 Al A 500 04MAR2016 11MAR2016
6 Al A 500 18FEB2016 25FEB2016
7 E5 A 500 16MAR2016 23MAR2016
8 Al A 500 12MAR2016 1SMAR2016
9 C3 A 500 14MAR2016 21MAR2016

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Conclusion

* indexes can simplify coding by replacing the sort procedure
with an index option before combining or classifying data

* hash objects can be used to combine two or more unsorted
datasets in a single data step

* these techniques can be used to reduce reliance on the SORT
procedure resulting in shorter code, quicker and neater
programming as well as improved execution time

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Questions?

P P [

It's QUESTION TIME!!

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

Jason A Smith

Argo Analytics Ltd

32 Woodlark Road, Cambridge CB3 OHS, UK
Phone: +44 7792 046599

Email: jason@argoanalytics.co.uk

LinkedIn: http://www.linkedin.com/in/jason-a-smith
Web: www.argoanalytics.co.uk

Perish the Sort: Using Indexes and Hash Objects for Efficient Programming

mailto:jason@argoanalytics.co.uk
http://www.linkedin.com/in/jason-a-smith
http://www.linkedin.com/in/jason-a-smith
http://www.linkedin.com/in/jason-a-smith
http://www.linkedin.com/in/jason-a-smith
http://www.linkedin.com/in/jason-a-smith
http://www.argoanalytics.co.uk/

