
PhUSE 2016

1

Paper CC08

Perish the Sort: Using Indexes and Hash Objects for Efficient
Programming

Jason A Smith, Argo Analytics Ltd, Cambridge, UK

ABSTRACT

Every SAS® programmer will be well versed in using PROC SORT. Are we sorting data when we do not need to?
Unnecessary sorting can be time consuming, particularly when using large datasets. Is there any way that SAS will
allow us to classify or merge data without needing to sort it first?

Using indexes and hash objects are techniques that the SAS programmer can use to eliminate (or at least reduce)
reliance on the SORT procedure. This paper will present some examples of how to easily include these techniques in
your programming and allow you to “perish the sort”.

INTRODUCTION

This paper will look at indexes, hash objects and other programming techniques that you can use to combine or
classify data without the need to sort or order the datasets first.

In line with general SAS usage, this paper will refer to indices as “indexes”.

INDEXES

Creating an index allows you to set, merge or summarise a dataset using a BY statement without the need to sort the
data first. An index can be easily created at dataset creation, be quicker to code than a sort procedure and can
improve the program’s execution time. This section will give examples of creating simple and composite indexes.

When using indexes for the first time it can be useful to set MSGLEVEL=I to provide additional information in the SAS
log:

options msglevel=i;

SIMPLE INDEX
A simple index consists of a single key variable, which can be either character or numeric. The index must be named
the same as the variable name.

SIMPLE INDEX EXAMPLE

data classfit (index=(name));

 set sashelp.classfit;

run;

After submitting this in SAS, the log confirms that the index has been created:

The data can now be used with a BY statement without the need for the dataset to be sorted:

data class;

 merge sashelp.class classfit;

 by name;

run;

PhUSE 2016

2

The SAS log confirms that the index has been used:

COMPOSITE INDEX

A composite index consists of multiple key variables, which can be any combination of character or numeric. The
index must be given a unique name that does not match any existing variable name.

COMPOSITE INDEX EXAMPLE

data class (index=(sexage=(sex age)));

 set sashelp.class;

run;

The SAS log confirms that a composite index has been created:

The data can now be used with a BY statement without being sorting:

proc means data=class;

 by sex age;

 var height weight;

run;

The SAS log confirms that the index has been used:

PhUSE 2016

3

MULIPLE INDEXES

Any number of indexes can be created in a data step. This is an example of creating a simple index on variable
NAME along with a composite index on variables SEX and AGE:

MULTIPLE INDEXES EXAMPLE

data classfit (index=(name sexage=(sex age)));

 set sashelp.classfit;

run;

The SAS log confirms that both the simple index NAME and composite index SEXAGE have been created:

UNIQUE INDEX

A unique index can be used to ensure that the key variable(s) are unique for each row. SAS will reject the index and
give an error if any duplicate keys exist. It is recommended to use this type of index only when you expect the key to
be unique and want SAS to provide an error so that you can check any duplicates.

UNIQUE INDEX EXAMPLE

data class (index=(sex/unique));

 set sashelp.class;

run;

INDEX MANAGEMENT

An index can also be easily added to (or deleted from) an existing dataset using either PROC DATASETS or PROC
SQL.

PROC DATASETS EXAMPLE

proc datasets nolist;

 modify classfit;

 index delete name;

 index create sex;

 index create namesex=(name sex)/unique;

quit;

PhUSE 2016

4

PROC SQL EXAMPLE

proc sql;

 drop index sex from classfit;

 create index age on classfit;

 create unique index agename on classfit(age,name);

quit;

HASH OBJECTS

Hash objects are a type of data structure consisting of key items and data items that allows SAS to efficiently search
for data. The hash object is stored in memory and only exists during the execution of the data step in a similar way to
a temporary array.

A hash object can be used to combine two existing datasets by loading one dataset into the hash object and by using
the key variable(s) to retrieve the data item variables into the other dataset. There is no need for either dataset to be
sorted or ordered and the order of the original dataset is unchanged.

This can be very useful in, for example, a raw data-cut program, where the datasets are not sorted and the existing
order of the datasets should be retained.

USING A HASH OBJECT TO COMBINE UNSORTED DATASETS

In this example, the requirement is to cut the RAW.DOSE dataset, only keeping subjects in Cohort A. The cohort
variable is in the RAW.COHORT dataset. The cohort variable will be added to the CUT.DOSE dataset for
confirmation.

The RAW.DOSE dataset contains several records for each subject. The dataset is not sorted:

PhUSE 2016

5

The COHORT dataset contains 5 subjects and their assigned cohort. The dataset is not sorted:

HASH OBJECT CODE

The following code will create a new CUT.DOSE dataset containing only subjects in Cohort A. There is no need to
sort the datasets and the CUT.DOSE dataset will retain the original order.

data cut.dose;

 length SUBJECT $2 COHORT $1;

 if _n_=1 then do;

 declare hash h(dataset:"raw.cohort(where=(cohort='A'))"); ①

 h.defineKey("subject"); ②

 h.defineData("cohort"); ③

 h.defineDone();

 call missing (subject,cohort);

 end;

 set raw.dose; ④

 rc = h.find(); ⑤

 if rc = 0 then output; ⑥

 drop rc;

run;

NOTES

① read the RAW.COHORT dataset into the hash object, only keeping Cohort A subjects.

② define the key variable as SUBJECT. This is the equivalent to the BY variable in a merge. Any number of

② variables can be included in a comma-separated list.

③ define the data item variable(s) that are to be output to the new dataset. Any number of variables can be included

③ in a comma-separated list. This method is optional.

④ read in the RAW.DOSE dataset.

⑤ h.find() is the method used to retrieve the data from the hash object.

⑥ a return code of zero indicates that the find was successful.

SAS LOG AND OUTPUT

The SAS log confirms that only 9 of the original 15 observations have been output:

PhUSE 2016

6

The cut dataset contains only the Cohort=’A’ patients and the original order has been retained:

SPD ENGINE

The SAS Scalable Performance Data Engine (SPD Engine) supports the implicit sort when it encounters a BY
statement for processing data. This method is particularly beneficial for dealing with large datasets and is only
recommended for advanced SAS users.

CLASSFIT has been copied from SASHELP to WORK. This dataset is not sorted as we can see from the first six
observations:

If we attempt to use a BY statement on this dataset:

data unsorted;

 set classfit;

 by name;

run;

PhUSE 2016

7

SAS will give us an error:

We can utilise the SPDE implicit sort by re-assigning the WORK library as the USER library using the SPD Engine:

libname user spde "%sysfunc(pathname(work))";

SAS uses the USER library rather than the WORK library as default when it is assigned. As we have assigned the
USER library using the SPD Engine, even though it has the same physical location as the WORK library, any data
will be implicitly sorted by SAS as required.

If we try the same UNSORTED data step as before:

data unsorted;

 set classfit;

 by name;

run;

This time the data step has been successful:

The output dataset is now in NAME order, as we can see from the first six observations:

PhUSE 2016

8

CONCLUSION

This paper has looked at ways of classifying and merging data without the need to sort the data first.

Using an index can simplify coding by replacing the sort procedure with an index option consisting of as little as two
words, as well as potentially reducing execution time.

A hash object can be used to combine two unsorted datasets in a single data step, replacing the need for potentially
several uses of the sort procedure.

These techniques can be used to reduce reliance on the SORT procedure resulting in shorter code, quicker and
neater programming as well as improved execution time.

RECOMMENDED READING

SAS Institute Inc.: SAS Certification Prep Guide Advanced Programming for SAS9 (SAS Institute Inc., 2011)
Chapter 13: Creating Samples and Indexes

Michele M. Burlew: SAS Hash Object Programming Made Easy (SAS Institute Inc., 2012)

SAS Online Guide to Understanding SAS Indexes:
http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a000440261.htm

SAS 9.3 Component Objects: Reference
https://support.sas.com/documentation/cdl/en/lecompobjref/63327/PDF/default/lecompobjref.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Jason A Smith
Argo Analytics Ltd
32 Woodlark Road
Cambridge CB3 0HS, UK

 Work Phone: +44 7792 046599
 Email: jason@argoanalytics.co.uk
 LinkedIn: http://www.linkedin.com/in/jason-a-smith
 Web: http://www.argoanalytics.co.uk

Brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a000440261.htm
https://support.sas.com/documentation/cdl/en/lecompobjref/63327/PDF/default/lecompobjref.pdf
mailto:jason@argoanalytics.co.uk
http://www.linkedin.com/in/jason-a-smith
http://www.argoanalytics.co.uk/

